H-Index
题目描述
Given an array of citations (each citation is a non-negative integer) of a researcher, write a function to compute the researcher’s h-index.
According to the definition of h-index on Wikipedia: “A scientist has index
h
ifh
of his/herN
papers have at leasth
citations each, and the otherN − h
papers have no more thanh
citations each.”For example, given
citations = [3, 0, 6, 1, 5]
, which means the researcher has5
papers in total and each of them had received3, 0, 6, 1, 5
citations respectively. Since the researcher has3
papers with at least3
citations each and the remaining two with no more than3
citations each, his h-index is3
.Note: If there are several possible values for
h
, the maximum one is taken as the h-index.
解法
代码如下:
public static int hIndex( int[] citations ) {
Arrays.sort( citations );
for( int i = 0; i < citations.length; ++i )
if( citations[i] >= citations.length - i )
return citations.length - i;
return 0;
}
思考过程:
根据题意, 知道h-index
与元素个数和数值大小有关. 所以可以先排序.
元素的个数可以根据数组下标确定, 数值大小根据元素值确定.
如果当前元素值大于等于元素的个数, 说明后面的元素也都大于等于元素的个数, 这就说明找到h-index
时空复杂度: 时间复杂度是O(nlogn)
, 空间复杂度是O(1)
H-Index II
题目描述
Follow up for H-Index: What if the citations array is sorted in ascending order? Could you optimize your algorithm?
Hint:
Expected runtime complexity is in
O(logn)
and the input is sorted.
解法
代码如下:
public static int hIndex( int[] citations ) {
int low = 0, high = citations.length-1;
while( low <= high ) {
int mid = low + ( high - low ) / 2;
if( citations.length - mid <= citations[mid] )
high = mid - 1;
else
low = mid + 1;
}
return citations.length - low;
}
思考过程: 二分搜索
.跟上面一样的思考方式.
每次找到范围内的中间值, 如果中间值大于等于元素个数, 为了获得更大的h-index, 向左边继续搜索.
时空复杂度: 时间复杂度是O(logn)
, 空间复杂度是O(1)