Minimum Path Sum
题目描述
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
解法
代码如下:
public static int minPathSum( int[][] grid ) {
int m = grid.length, n = grid[0].length;
int[][] dp = new int[m][n];
dp[0][0] = grid[0][0];
for( int i = 1; i < m; ++i )
dp[i][0] = grid[i][0]+dp[i-1][0];
for( int j = 1; j < n; ++j )
dp[0][j] = grid[0][j]+dp[0][j-1];
for( int i = 1; i < m; ++i )
for( int j = 1; j < n; ++j )
dp[i][j] = Math.min( dp[i-1][j], dp[i][j-1] ) + grid[i][j];
return dp[m-1][n-1];
}
思考过程: 动态规划
. 当前格子
的最小值是由左边一格
或上边一格
加上当前的值组成的. 也就是
dp[i][j]
: 在第[i][j]
个格子的最小值- 最优子结构:
dp[i][j] = Math.min( dp[i-1][j], dp[i][j-1] ) + grid[i][j]
- 重复子问题:
dp[i-1][j]
和dp[i][j-1]
中有共同的子问题dp[i-1][j-1]
时空复杂度: 时间复杂度是O(n^2), 空间复杂度是O(n^2)